Что такое два рода зарядов. И. С. Стекольников Молния и гром. I. Организационный этап

Летний полдень. Парит. Вдруг небо начинает быстро темнеть. Веет прохладой. Налетевший порыв ветра поднимает пыль и несёт её вдоль улицы. Проходит несколько минут, и первые крупные капли дождя падают на землю, оставляя на пыли большие тёмные пятна. Скоро дождь усиливается, - вот он уже полил сильными струями, создавая сплошную завесу из воды. Вдруг в свинцовом небе сверкнула извилистая огненная лента… Молния! Она ударила где-то близко, и через одну-две секунды раздался такой звук, как будто поблизости загрохотали орудийные выстрелы. Ещё несколько молний, сильных раскатов грома - и дождь утих, небо прояснилось. Гроза пронеслась мимо.

Мощные раскаты грома и ослепительные вспышки молнии внушали раньше людям страх. Наблюдая разрушения, иногда причинявшиеся молнией, человек, полный предрассудков и суеверий, считал, что молнию вызывают боги или могущественные силы, что молния «в наказание» убивает и калечит людей и сжигает их кров. В древнегреческих легендах говорится, что главный греческий бог - громовержец Зевс - в своём гневе мечет огненные стрелы - молнии. В русских поверьях считалось, что грозой управляет «Илья-пророк», разъезжающий в своей колеснице по небу.

Однако, несмотря на страх перед молнией, уже в глубокой древности люди внимательно наблюдали и изучали это грозное и прекрасное явление природы. Уже несколько десятков лет учёные исследуют его. Благодаря их самоотверженному и упорному труду, одно из интереснейших явлений природы - молния и сопровождающий её гром - в настоящее время получило полное научное объяснение. Выяснилось, что ничего таинственного в этом явлении нет и что «божественные силы» здесь не при чём. Учёные могут искусственно создавать молнию, правда в небольших размерах, в своих лабораториях. Совсем крошечные молнии может получить, как это рассказано дальше, каждый читатель этой книжки.

Люди стремились изучить молнию не просто из любопытства. Они хотели научиться бороться с нею, хотели её победить. Непобеждённая молния очень опасна. Она может смертельно поразить человека, разрушить здание, вызвать взрывы и пожары, причиняющие миллионные убытки, создать тяжёлые аварии электростанций, которые прекратят отпуск энергии. Всё это нарушает нормальную жизнь и работу людей.

Чтобы бороться с молнией, люди стремились изучить её. Без знаний победить молнию было невозможно. «Всё даётся знанием, победа - тоже», - говорил Максим Горький.

В этой небольшой книжке мы расскажем о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного действия. Начнём мы с основных сведений об электричестве, без которых всё дальнейшее не будет читателю понятно.

I. Некоторые сведения об электричестве

1. Молния и электрическая искра

Две с половиной тысячи лет тому назад греческий учёный Фалес из города Милета заметил, что если янтарь (жёлтую смолу, употреблявшуюся для украшения) натереть мехом, то он может притягивать лёгкие предметы - например, волокна или соломинки. По-гречески янтарь назывался электроном. От этого слова и получило своё название электричество.

Потом было обнаружено, что такие же свойства, как янтарь, приобретают и некоторые другие предметы, например, стекло, эбонит (вещество, из которого делают гребёнки, граммофонные пластинки и т. д.), если их натереть шерстью, шёлком или мехом. Тогда говорят, что эти предметы наэлектризованы.

Эбонитовую гребёнку можно наэлектризовать, расчёсывая ею волосы. Тот, кто видел, как в темноте расчёсывают чисто промытые и сухие волосы гребёнкой, замечал голубоватые искорки и слышал их треск.

Одна из первых машин, которую человек построил для получения электричества (это было в конце 17 века), состояла из стеклянного шара, вращающегося на железной оси. Когда натирали сукном вращающийся шар и затем дотрагивались до него рукою, то между шаром и рукой в темноте был виден свет и слышался треск. При быстром вращении шара наблюдались слабенькие искорки. Кажется сначала удивительным, что эти маленькие слабенькие искры и их лёгкий треск имеют такое же происхождение, что и громадная ослепительная молния и сопровождающий её гром. Но это именно так. Уже 200 лет тому назад учёные окончательно установили, что молния - это электрическая искра.

Впервые это доказал в 1752 году знаменитый американский учёный и общественный деятель Вениамин Франклин.

Летом 1752 года в американском городе Филадельфия можно было наблюдать странную картину. Забравшиеся под навес два взрослых человека (старшему на вид было лет 45, другой был совсем юноша) запускали шёлковый змей. Это были Франклин и его сын. К концу шнурка змея, прикреплённого шёлковой лентой к столбу, отец с сыном привязали массивный железный ключ от садовой калитки (рис. 1). Только сына посвятил отец в тайну своих опытов, опасаясь, в случае их неудачи, язвительных насмешек. Он тревожно стоял у змея, ожидая результатов опыта, как приговора своим многолетним исследованиям.

Рис. 1. Франклин с сыном запускают змея. (Со старинной картины.)

Вот надвинулась туча и прошла мимо. Никаких результатов, никаких следов электричества… И вдруг волокна шнурка натянулись, как это бывало при опытах с электричеством, проводившихся учёным в лаборатории. Франклин быстро поднёс палец к ключу и… сотрясение, которое он получил от проскочившей при этом сильной электрической искры, показалось ему приятнейшим из ощущений.

Ведь он добился того, чего так страстно и упорно желал! Его открытие возбудило весь учёный мир того времени. Бледная искра, издавшая негромкий треск, прозвучала громом на весь мир, доказав, что молния - это электрический разряд. Франклин как бы низвёл молнию на землю, отняв её у таинственных «неземных сил».+ », а отрицательное знаком «». Такие обозначения и будут употребляться на рисунках этой книжки.

В ходе данного урока мы продолжим знакомиться с «китами», на которых стоит электродинамика, - электрическими зарядами. Мы изучим процесс электризации, рассмотрим, на каком принципе основан этот процесс. Поговорим о двух типах зарядов и сформулируем закон сохранения этих зарядов.

На прошлом уроке мы уже упоминали о ранних экспериментах в электростатике. Все они были основаны на натирании одного вещества о другое и дальнейшем взаимодействии этих тел с малыми объектами (пылинками, клочками бумаги…). Все эти опыты основаны на процессе электризации.

Определение. Электризация – разделение электрических зарядов. Это значит, что электроны от одного тела переходят к другому (рис. 1).

Рис. 1. Разделение электрических зарядов

До момента открытия теории о двух принципиально разных зарядах и элементарного заряда электрона считалось, что заряд – некая невидимая сверхлегкая жидкость, и, если она есть на теле, значит, тело обладает зарядом и наоборот.

Первые серьезные опыты по электризации различных тел, как уже было сказано на предыдущем уроке, проводил английский ученый и врач Уильям Гильберт (1544-1603), однако ему не удавалось наэлектризовать металлические тела, и он посчитал, что электризация металлов невозможна. Однако это оказалось неправдой, что впоследствии доказал русский ученый Петров. Однако следующий более важный шаг в исследовании электродинамики (а именно открытие разнородных зарядов) сделал французский ученый Шарль Дюфе (1698-1739). В результате своих опытов он установил наличие, как он их назвал, стеклянных (трение стекла о шелк) и смоляных (янтаря о мех) зарядов.

Еще через некоторое время были сформулированы следующие законы (рис. 2):

1) одноименные заряды взаимно отталкиваются;

2) разноименные заряды взаимно притягиваются.

Рис. 2. Взаимодействие зарядов

Обозначения положительных (+) и отрицательных (–) зарядов было введено американским ученым Бенджамином Франклином (1706-1790).

По договоренности принято называть положительным заряд, который образуется на стеклянной палочке, если натирать ее бумагой или шелком (рис. 3), а отрицательный – на эбонитовой или янтарной палочке, если натирать ее мехом (рис. 4).

Рис. 3. Положительный заряд

Рис. 4. Отрицательный заряд

Открытие Томсоном электрона наконец дало ученым понять, что при электризации никакая электрическая жидкость не сообщается телу и никакой заряд не наносится извне. Происходит перераспределение электронов, как мельчайших носителей отрицательного заряда. В области, куда они приходят, их количество становится большим, чем количество положительных протонов. Таким образом, появляется нескомпенсированный отрицательный заряд. И наоборот, в области, откуда они уходят, появляется нехватка отрицательных зарядов, необходимых для компенсации положительных. Таким образом, область заряжается положительно.

Было установлено не только наличие двух разных видов зарядов, но и два различных принципа их взаимодействия: взаимное отталкивание двух тел, заряженных одноименными зарядами (одного знака) и соответственно притяжение разноименно заряженных тел.

Электризация может производиться несколькими способами:

  • трением;
  • прикосновением;
  • ударом;
  • наведением (через влияние);
  • облучением;
  • химическим взаимодействием.

Электризация трением и электризация соприкосновением

Когда стеклянную палочку натирают о бумагу, палочка получает положительный заряд. Соприкасаясь с металлической стойкой, палочка передает положительный заряд бумажному султану, и его лепестки отталкиваются друг от друга (рис. 5). Этот опыт говорит о том, что одноименные заряды отталкиваются друг от друга.

Рис. 5. Электризация прикосновением

В результате трения о мех эбонит приобретает отрицательный заряд. Поднося эту палочку к бумажному султану, видим, как лепестки притягиваются к ней (см. рис. 6).

Рис. 6. Притяжение разноименных зарядов

Электризация через влияние (наведение)

Поставим на подставку с султаном линейку. Наэлектризовав стеклянную палочку, приблизим ее к линейке. Трение между линейкой и подставкой будет небольшим, поэтому можно наблюдать взаимодействие заряженного тела (палочки) и тела, у которого заряда нет (линейка).

При проведении каждого эксперимента совершалось разделение зарядов, никаких новых зарядов не возникало (рис. 7).

Рис. 7. Перераспределение зарядов

Итак, если мы сообщили любым из вышеуказанных способов электрический заряд телу, нам, конечно же, необходимо каким-либо способом оценить величину этого заряда. Для этого используется прибор электрометр, который был придуман русским ученым М.В. Ломоносовым (рис. 8).

Рис. 8. М.В. Ломоносов (1711-1765)

Электрометр (рис. 9) состоит из круглой банки, металлического стержня и легкого стержня, который может вращаться вокруг горизонтально расположенной оси.

Рис. 9. Электрометр

Сообщая заряд электрометру, мы в любом случае (и для положительного, и для отрицательного заряда) заряжаем и стержень, и стрелку одноименными зарядами, в результате чего стрелка отклоняется. По углу отклонения и оценивается заряд (рис. 10).

Рис. 10. Электрометр. Угол отклонения

Если взять наэлектризованную стеклянную палочку, прикоснуться ею к электрометру, то стрелка отклонится. Это говорит о том, что электрометру был сообщен электрический заряд. В ходе этого же эксперимента с эбонитовой палочкой этот заряд компенсируется (рис. 11).

Рис. 11. Компенсация заряда электрометра

Так как уже было указано, что никакого создания заряда не происходит, а происходит лишь перераспределение, то имеет смысл сформулировать закон сохранения заряда:

В замкнутой системе алгебраическая сумма электрических зарядов остается постоянной (рис. 12). Замкнутой системой называется система тел, из которой заряды не уходят и в которую заряженные тела или заряженные частицы не поступают.

Рис. 13. Закон сохранения заряда

Данный закон напоминает о законе сохранения массы, так как заряды существуют только вместе с частицами. Очень часто заряды по аналогии называют количеством электричества .

До конца закон сохранения зарядов не объяснен, так как заряды появляются и исчезают только попарно. Другими словами, если заряды рождаются, то только сразу положительный и отрицательный, причем равные по модулю.

На следующем уроке мы подробнее остановимся на количественных оценках электродинамики.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Интернет-портал «youtube.com» ()
  2. Интернет-портал «abcport.ru» ()
  3. Интернет-портал «planeta.edu.tomsk.ru» ()

Домашнее задание

  1. Стр. 356: № 1-5. Касьянов В.А. Физика 10 класс. - М.: Дрофа. 2010.
  2. Почему отклоняется стрелка электроскопа, если к нему прикоснуться заряженным телом?
  3. Один шар заряжен положительно, второй - отрицательно. Как изменится масса шаров при их соприкосновении?
  4. *К шару заряженного электроскопа поднесите, не дотрагиваясь, заряженный металлический стержень. Как изменится отклонение стрелки?

Грей сделал ещё одно очень важное открытие, значение которого было понято позднее. Все знали, что если прикоснуться изолированным металлическим цилиндриком к наэлектризованной стеклянной палочке, то на цилиндрик также перейдет электричество. Однако оказалось, что можно наэлектризовать цилиндрик, и не касаясь стеклянной палочки, а только приблизив его к ней. Пока цилиндрик будет находиться вблизи наэлектризованной палочки, на нем обнаруживается электричество.

Опубликованные опыты Грея вызвали интерес у французского физика Шарля Франсуа Дюфе (1698–1739) и побудили его приняться за эксперименты в области изучения электричества. Опыты с первым электрическим маятником , т.е. с деревянным шариком, подвешенным на тонкой шелковой нити (рис. 5.2), проведенные около 1730 г., показали, что такой шарик притягивается натертой палочкой сургуча. Но лишь стоит коснуться ее, как шарик немедленно отталкивается от сургучной палочки, как будто избегая ее. Если теперь поднести к шарику стеклянную трубку, потертую об амальгамированную кожу, то шарик будет притягиваться к стеклянной трубке и отталкиваться от сургучной палочки. Это различие, впервые отмеченное Шарлем Дюфе, привело его к открытию, что наэлектризованные тела притягивают ненаэлектризованные, и как только последние посредством прикосновения наэлектризуются, они начинают отталкиваться друг от друга. Он устанавливает наличие двух противоположных родов электричества, которые называет стеклянным и смоляным электричеством. Он ещё замечает, что первое обнаруживается на стекле, драгоценных камнях, волосах, шерсти и т.д., в то время как второе возникает на янтаре, смоле, шелке и т.д. Дальнейшие исследования показали, что все тела электризуются либо как стекло, потертое о кожу, либо как смола, потертая о мех. Следовательно, имеются два вида электрических зарядов, причем однородные заряды отталкиваются друг от друга, а разнородные притягиваются. Силы взаимодействия электрических

зарядов, проявляющиеся в притяжении или отталкивании, называются электрическими. То есть электрические силы создаются электрическими зарядами и действуют на заряженные тела или частицы.

Избыток зарядов какого-либо одного вида в данном теле называется величиной его заряда, или, иначе, количеством электричества (q ).

Шарль Дюфе был первым ученым, извлекавшим электрические искры из наэлектризованного человеческого тела, находившегося на изолированной подставке. Этот опыт в то время был настолько новым и оригинальным, что аббат Жан Нолле (1700–1770), тоже занимавшийся изучением электрических явлений, был приведен в ужас, когда впервые его увидел.

Очень удачное обозначение двух родов электричества, удержавшееся до нашего времени, дал выдающийся американский физик Бенджамин Франклин.

«Смоляное» электричество было названо Франклином отрицательным, а «стеклянное» – положительным. Эти названия он выбрал потому, что «смоляное» и «стеклянное» электричества, подобно положительной и отрицательной величинам, взаимно уничтожаются.

Явления электризации объясняются особенностями строения атомов и молекул различных веществ. Ведь все тела построены из атомов. Каждый атом состоит из заряженного положительно атомного ядра и движущихся вокруг него отрицательно заряженных частиц – электронов. Атомные ядра различных химических элементов не одинаковы, а отличаются величиной заряда и массой. Электроны же все совершенно тождественны, однако их число и расположение в разных атомах различны.

Чтобы получить представление о величине заряда в 1 Кл, рассчитаем силу взаимодействия двух зарядов по одному кулону каждый, помещенных в вакууме на расстоянии 1 м друг от друга. Воспользовавшись формулой закона Кулона, получаем, что F = 9·10 9 Н, или приблизительно 900000 тонн. Таким образом, 1 Кл – очень большой заряд. На практике такие заряды не встречаются.

С их помощью Кулон определил, что два маленьких наэлектризованных шарика оказывают друг на друга в направлении линии их соединения в зависимости от того, наэлектризованы они одноименно или разноименно, притягивающую или отталкивающую силу взаимодействия F , равную произведению их точечных электрических зарядов (соответственно q 1 и q 2 ), деленному на квадрат расстояния r между ними. То есть

Шарль Огюстен де Кулон (1736–1806) – французский физик и инженер – для измерения силы магнитного и электрического притяжения сконструировал крутильные весы.

При нормальном состоянии атома положительный заряд его ядра равен общему отрицательному заряду электронов этого атома, так что любой атом в нормальном состоянии электрически нейтрален. Но под влиянием внешних воздействий атомы могут терять часть своих электронов, тогда как заряд их ядер при этом остается неизменным. В этом случае атомы заряжаются положительно и называются положительными ионами. Атомы могут также присоединять к себе добавочные электроны и заряжаться при этом отрицательно. Такие атомы называются отрицательными ионами.

Закон, по которому два наэлектризованных тела действуют друг на друга, был впервые сформулирован в 1785 г. Шарлем Кулоном в опыте с прибором, названным им крутильными весами (рис. 5.3).

F = (q 1 · q 2 )/4 π ε а r 2 ,

где ε а – абсолютная диэлектрическая проницаемость среды, в которой находятся заряды; r – расстояние между зарядами.

Этот вывод получил название закона Кулона. Впоследствии именем Кулона была названа единица количества электричества , используемая в электротехнической практике.

В системе СИ за единицу количества электричества принимается один кулон (1 Кл) – заряд, протекающий через поперечное сечение проводника за одну секунду при силе тока в один ампер.

2. Два рода электричества

Производя различные опыты над электричеством, люди выяснили основные его свойства. Прежде всего они открыли, что существует два рода электричества. Одно получается при натирании мехом стекла, драгоценных камней и некоторых других материалов - этот род электричества назвали стеклянным. Другой род электричества получается натиранием янтаря, смолы и ряда других веществ - это электричество назвали смоляным. Теперь для стеклянного и смоляного электричества приняты в науке другие названия. Электричество первого рода (стеклянное) называется положительным, а второго рода (смоляное) - отрицательным. В науке принято положительное электричество обозначать знаком «+ », а отрицательное знаком «». Такие обозначения и будут употребляться на рисунках этой книжки.

Электричество одного какого-нибудь рода отталкивает от себя электричество того же рода и притягивает электричество другого рода. Это - важное свойство электричества. Вот какими простыми опытами можно его проверить.

На вбитый в стену гвоздь наденем чистую сухую стеклянную трубочку, а к концу её подвесим на шёлковой нитке кусочек пробки (рис. 2, слева). Натрём стеклянную палочку мехом или плотной бумагой. Тогда на стекле появится положительное (стеклянное) электричество. Дотронемся затем этой палочкой до пробки. При этом часть электричества перейдёт с палочки на пробку. Теперь на пробке и на конце стеклянной палочки будет находиться электричество одного и того же рода (положительное), и пробка отскочит от палочки.

Рис. 2. Опыты с электричеством. Слева: зарядившись от натёртой палочки, пробка отталкивается от неё. Справа наверху: заряженные натёртой стеклянной палочкой две пробки оттолкнутся друг от друга. Справа внизу: если одну пробку зарядить от стеклянной, а другую - от смоляной палочки, то они притянутся друг к другу.

Подвесим теперь на стеклянную трубку две шелковинки с пробками. Если к обеим пробкам прикоснуться натёртой стеклянной палочкой, то они получат одинаковое, положительное электричество (или, как говорят, «зарядятся» положительным электричеством) и оттолкнутся друг от друга (рис. 2, справа наверху). То же самое произойдёт, если зарядить обе пробки отрицательным электричеством от натёртой смоляной палочки. Таким образом, два одинакового рода электричества отталкиваются друг от друга.

Если же одну пробку зарядить натёртой стеклянной палочкой, а другую - натёртой смоляной, то обе пробки окажутся заряженными электричествами различного рода и притянутся одна к другой (рис. 2, справа внизу).

Таким образом, два разного рода электричества притягиваются одно к другому.

Из книги Революция в физике автора де Бройль Луи

3. Дискретная природа электричества. Электроны и протоны Из только что сказанного видно, что в физике, как и в химии, гипотеза, согласно которой все тела состоят из молекул, представляющих собой в свою очередь комбинации различных атомов, оказалась чрезвычайно

Из книги Физическая химия: конспект лекций автора Березовчук А В

8. Проводники первого и второго рода Проводники – вещества, проводящие электрический ток благодаря наличию в них большого количества зарядов, способных свободно перемещаться (в отличие от изоляторов). Они бывают I (первого) и II (второго) рода. Электропроводность

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Молния и гром автора Стекольников И С

3. Прибор для наблюдения действия электричества - электроскоп Чтобы узнать, заряжен ли какой-нибудь предмет электричеством, пользуются простым прибором, который называется электроскопом. Электроскоп основан на том свойстве электричества, о котором только что

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

7. Получение электричества через влияние Теперь, когда мы знаем, что атомы каждого тела состоят из частиц, содержащих как положительное, так и отрицательное электричество, мы можем объяснить важное явление - получение электричества через влияние. Это поможет нам понять,

Из книги Эволюция физики автора Эйнштейн Альберт

Глава 3. Химия. Какого рода химические реакции подтолкнули атомы кобразованию первых живых существ? Сущий вздор - рассуждать сейчас о происхождении жизни; с тем же успехом можно было бы рассуждать о происхождении материи.Из письма Ч. Дарвина Дж. Д. Хукеру 29 марта

Из книги Для юных физиков [Опыты и развлечения] автора Перельман Яков Исидорович

Из книги Вечный двигатель - прежде и теперь. От утопии - к науке, от науки - к утопии автора Бродянский Виктор Михайлович

Элементарные кванты вещества и электричества В картине строения вещества, нарисованной кинетической теорией, все элементы построены из молекул. Возьмем простейший пример наиболее легкого химического элемента - водорода. Мы видели, как изучение броуновского движения

Из книги Фарадей. Электромагнитная индукция [Наука высокого напряжения] автора Кастильо Сержио Рарра

40. Одна из особенностей электричества При помощи легко выполнимого самодельного прибора вы можете удостовериться в одной интересной и очень важной особенности электричества – скопляться только на поверхности предметов и притом лишь на выпуклых, выдающихся его

Из книги автора

Глава первая. ВЕЧНЫЙ ДВИГАТЕЛЬ ПЕРВОГО РОДА: ОТ РАННИХ ПОПЫТОК ДО «ОПЫТНЫХ ОБРАЗЦОВ» Мартын: Что такое perpetuum mobile? Бертольд: Perpetuum mobile, то есть вечное движение. Если найду вечное движение, то я не вижу границ творчеству человеческому… видишь ли, добрый мой Мартын: делать

Из книги автора

Глава вторая. УТВЕРЖДЕНИЕ ЗАКОНА СОХРАНЕНИЯ ЭНЕРГИИ И КОНЕЦ ВЕЧНОГО ДВИГАТЕЛЯ ПЕРВОГО РОДА Пора чудес прошла, И мы теперь должны искать причины Всему, что совершается на свете. Шекспир. «Генрих

Из книги автора

2.3. Последние вечные двигатели первого рода Приведем для начала некоторые статистические данные по ppm-1, относящиеся к интересующему нас периоду. Естественно, они носят отрывочный характер, но все же достаточно показательны.По данным Британского патентного бюро за время

Из книги автора

Глава пятая. ВЕЧНЫЕ ДВИГАТЕЛИ ВТОРОГО РОДА Я не собираюсь критиковать. Я просто не могу понять, как может человек написать такую чепуху? Н. Бор 5.1. Какие ppm-2 изобретают теперь? Различных проектов ppm-2 предлагается очень много, и принципы их действия самые разнообразные:

Из книги автора

ПЕРВЫЕ ИСКРЫ ЭЛЕКТРИЧЕСТВА Впервые у Фарадея появилась возможность изучить, что такое электричество. Такая же цель была и у физика, жившего в Дании, Ханса Кристиана Эрстеда (1777–1851).В 1820 году Эрстед открыл, что под действием электрического тока стрелка компаса немного

Производя различные опыты над электричеством, лю­ди выяснили основные его свойства. Прежде всего они открыли, что существует два рода электричества. Одно получается при натирании мехом стекла, драгоценных камней и некоторых других материалов - этот род элек­тричества назвали стеклянным. Другой род электри­чества получается натиранием янтаря, смолы и ряда других веществ - это электричество назвали смоляным. Теперь для стеклянного и смоляного электричества при­няты в науке другие названия. Электричество первого ро­да (стеклянное) называется положительным, а второго рода (смоляное) - отрицательным. В науке принято по­ложительное электричество обозначать знаком «+», а отрицательное знаком «-». Такие обозначения и будут употребляться на рисунках этой книжки.

Электричество одного какого-нибудь рода отталкивает от себя электричество того же рода и притягивает элек­тричество другого рода. Это - важное свойство электри­чества. Вот какими простыми опытами можно его про­верить.

На вбитый в стену гвоздь наденем чистую сухую сте­клянную трубочку, а к концу её подвесим на шёлковой нитке кусочек пробки (рис. 2, слева). Натрём стеклянную палочку мехом или плотной бумагой. Тогда на стекле появится положительное (стеклянное) электричество. Дотронемся затем этой палочкой до пробки. При этом часть электричества перейдёт с палочки на пробку. Те­перь на пробке и на конце стеклянной палочки будет на­ходиться электричество одного и того же рода (положи­тельное), и пробка отскочит от палочки.

Подвесим теперь на стеклянную трубку две шелко­винки с пробками. Если к обеим пробкам прикоснуться натёртой стеклянной палочкой, то они получат одинаковое, положительное электричество (или, как говорят, «заря­дятся» положительным электричеством) и оттолкнутся друг от друга (рис. 2, справа наверху). То же самое прои­зойдёт, если зарядить обе пробки отрицательным элек-

Тричеством от натёртой смоляной палочки. Таким образом, два одинакового рода электричества отталкиваются друг от друга.

Если же одну пробку зарядить натёртой стеклянной палочкой, а другую - натёртой смоляной, то обе пробки окажутся заряженными электричествами различного рода и притянутся одна к другой (рис. 2, справа внизу).

Таким образом, два разного рода электричества притя­гиваются одно к другому.

Так как шаровая молния изучена сравнительно мало, то до сих пор ещё нет надёжно проверенных способов защиты от неё. Хотя и бывали случаи, когда шаровая молния прони­кала даже через закрытое …

Чтобы не быть поражённым ударом молнии, нужно избегать во время грозы подходить к молниеотводам или высоким одиночным предметам (столбам, деревьям) на расстояние меньшее 8-10 метров. Если человек застиг­нут грозой вдали …

Основные требования, которые предъявляют к соору­жению молниеотвода, защищающего от грозы колхозные и сельские постройки, - это дешевизна и простота са­мого устройства. Наилучшей защитой является стержневой молние­отвод, который устанавливают на самой …