Уровни построения движений по Н. А. Бернштейну. Бернштейн, николай александрович Звания и награды

Основные положения теории Н.А. Бернштейна

В основе научного творчества Н.А. Бернштейна лежит его новое понимание жизнедеятельности организма, в соответствии с которым он рассматривается не как реактивная система, пассивно приспосабливающаяся к условиям среды (именно это следует из условно-рефлекторной теории), а как созданная в процессе эволюции активная, целеустремленная система. Иначе говоря, процесс жизни есть не простое «уравновешивание с внешней средой», а активное преодоление этой среды.

Фигура этого ученого является одной из наиболее значительных среди исследователей мозга XX в. Выдающейся его заслугой является то, что он первый в мировой науке использовал изучение движений в качестве способа познания закономерностей работы мозга. По мнению Н.А. Бернштейна, для тех, кто хочет понять, как работает мозг, как функционирует центральная нервная система (ЦНС), в природе едва ли существует более благодатный объект, чем исследование процессов управления движениями. Если до него движения человека изучали для того, чтобы их описать, то Н.А. Бернштейн стал изучать их, чтобы понять, как происходит управление ими.

В процессе исследования этих механизмов им были открыты такие фундаментальные явления в управлении, как сенсорные коррекции и принцип иерархического, уровневого управления, которые лежат в основе работы этих механизмов и без понимания которых правильное представление о закономерностях работы мозга в процессе управления движениями оказывается невозможным.

Следует особо подчеркнуть, что открытие этих явлений имело громадное значение и для развития многих других областей человеческого знания. Особенно наглядно это проявилось по отношению к одной из наиболее ярких наук XX столетия – кибернетике. Как известно, эта область современных знаний возникла в результате симбиоза (взаимовыгодное сосуществование) таких наук, как математика и физиология (ее раздела «Высшая нервная деятельность»). В основе всех кибернетических систем лежит открытый физиологами и удачно использованный математиками принцип обратной связи. Это название есть не что иное, как современное и более распространенное название принципа сенсорных коррекций, который был впервые описан Н.А. Бернштейном еще в 1928 г., т.е. за 20 лет до того, как это сделал создатель кибернетики Норберт Винер.

В соответствии с теорией сенсорных коррекций для выполнения какого-либо движения мозг не только посылает определенную команду мышцам, но и получает от периферийных органов чувств сигналы о достигнутых результатах и на их основании дает новые корректирующие команды. Таким образом, происходит процесс построения движений, в котором между мозгом и исполнительными органами существует не только прямая, но и непрерывная обратная связь.

Дальнейшие исследования привели Н.А. Бернштейна к гипотезе о том, что для построения движений различной сложности команды отдаются на различных уровнях (иерархических этажах) нервной системы. При автоматизации движений функции управления передаются на более низкий (неосознаваемый) уровень.

Еще одно из замечательных достижений Н.А. Бернштейна представляет собой открытое им явление, которое он назвал «повторением без повторения». Суть его заключается в следующем. При повторении одного и того же движения (например, шагов в ходьбе или беге), несмотря на один и тот же конечный результат (одинаковая длина, время выполнения и т.п.), путь работающей конечности и напряжения мышц в чем-то различны. При этом многократные повторения таких движений не делают эти параметры одинаковыми. Если соответствие и встречается, то не как закономерность, а как случайность. А это значит, что при каждом новом выполнении нервная система не повторяет одни и те же команды мышцам и каждое новое повторение совершается в несколько отличных условиях. Поэтому для достижения одного и того же результата нужны не одинаковые, а существенно различные команды мышцам.

На основании этих исследований был сформулирован важнейший для обучения движениям вывод: тренировка движения состоит не в стандартизации команд, не в «научении командам», а в научении каждый раз отыскивать и передавать такую команду, которая в условиях каждого конкретного повторения движения приведет к нужному двигательному результату.

Из всего этого следует еще один важный вывод: движение не хранится готовым в памяти, как это следует из условно-рефлекторной теории (и как, к сожалению, многие думают до сих пор), не извлекается в случае нужды из кладовых памяти, а каждый раз строится заново в процессе самого действия, чутко реагируя на изменяющуюся ситуацию. В памяти хранятся не штампы самих движений, а предписания (логарифмы) для их конструирования, которые строятся на основе механизма не стереотипного воспроизведения, а целесообразного приспособления.

Неоценимое значение имеет теория Н.А. Бернштейна и для понимания роли сознания в управлении движениями. Во многих учебных пособиях до сих пор можно встретить утверждение о том, что проникновение сознанием в каждую деталь движения содействует повышению скорости и качества его освоения. Это слишком упрощенное и во многом ошибочное утверждение. Нецелесообразность и даже принципиальная невозможность подобного тотального контроля со стороны сознания очень образно и убедительно могут быть продемонстрированы в ряде примеров. Приведем один из них.

Для этого рассмотрим, каким образом обеспечивается деятельность такого исключительного по своей сложности, точности, подвижности и жизненной важности органа, каким является зрительный аппарат человека.

Его двигательную активность обеспечивают 24 работающих попарно мышцы. Все эти мышцы осуществляют свою работу в тончайшем взаимном согласовании с раннего утра и до позднего вечера, причем совершенно бессознательно и в большинстве своем непроизвольно. Нетрудно себе представить, что если бы управление этими двумя дюжинами мышц, осуществляющих всевозможные согласования поворотов глаз, управление хрусталиком, расширение и сужение зрачков, наведение глаз на фокус и т.п., требовало произвольного внимания, то на это понадобилось бы столько труда, что лишило бы человека возможности произвольного управления другими органами тела.

Уровни построения движения

Прежде чем перейти к непосредственному рассмотрению механизмов, лежащих в основе освоения движений с позиции теории Н.А. Бернштейна, необходимо хотя бы в самом общем и кратком виде познакомиться с тем, что представляют собой уровни построения движений, что явилось основой их формирования и поступательного развития.

На протяжении долгих тысячелетий эволюции животного мира такой первоосновой и главной причиной развития явилась жизненная необходимость движения, все усложняющаяся двигательная активность.В процессе эволюции имело место безостановочное усложнение и увеличение разнообразия двигательных задач, решение которых было жизненно необходимо в борьбе различных особей за свое существование, за свое место на планете.

Этот процесс непрерывного двигательного приспособления сопровождался анатомическими усложнениями тех центральных нервных структур, которые должны были управлять новыми видами движений и которые для этого обрастали сверху новыми аппаратами управления, все более мощными и совершенными, более приспособленными к решению все усложняющихся двигательных задач. Эти вновь возникающие более молодые устройства не отрицали и не устраняли более древние, а лишь возглавляли их, благодаря чему формировались новые более совершенные и работоспособные образования.

Каждое из таких поочередно возникавших новых устройств мозга приносило с собой новый список движений, точнее говоря, новый круг посильных для данного вида животных двигательных задач. Следовательно, возникновение каждой очередной новой мозговой надстройки знаменовало собой биологический отклик на новое качество или новый класс двигательных задач.

Это также является убедительным свидетельством того, что именно двигательная активность, ее усложнение и разнообразие являлись на протяжении тысячелетий главной причиной развития и совершенствования функций головного мозга и нервной системы в целом. В результате такого развития сформировалось человеческое координационно-двигательное устройство ЦНС, представляющее собой наивысшую по сложности и совершенству структуру, превосходящую все другие подобные системы у каких бы то ни было живых существ. Эта структура состоит из нескольких разновозрастных (в эволюционном плане) уровней управления движениями, каждый из которых характеризуется своими особыми мозговыми анатомическими образованиями и особым, характерным только для него составом той чувствительности, на которую он опирается в своей деятельности, из которой он образует свои сенсорные коррекции (свое сенсорное поле).

Постепенно увеличиваясь, сложность двигательных задач становилась такой, что ни один даже самый молодой и совершенный уровень сам не мог справиться с их решением. В результате ведущему более молодому уровню приходилось привлекать к себе помощников из числа нижележащих более древних уровней, передавая им все большее количество вспомогательных коррекций, обеспечивающих плавность, быстроту, экономичность, точность движений, лучше оснащенных именно для этих видов коррекций. Такие уровни и их сенсорные коррекции называют фоновыми. А тот уровень, который сохраняет за собой верховное управление двигательным актом, его важнейшими смысловыми коррекциями, называется ведущим.

Таким образом, физиологический уровень построения движений – это совокупность взаимно обусловливающих друг друга явлений, таких как: а) особый класс двигательных задач; б) соответствующий им тип коррекций; в) определенный мозговой этаж и (как итог всего предыдущего) г) определенный класс (список) движений.

В настоящее время у человека выделяют пять уровней построения движений, которые обозначаются буквами А, B, C, D и E и имеют следующие названия:

A – уровень тонуса и осанки; B – уровень синергии (согласованных мышечных сокращений); C – уровень пространственного поля; D – уровень предметных действий (смысловых цепей); E – группа высших кортикальных уровней символической координации (письма, речи и т.п.).

Каждому из этих уровней соответствуют определенные анатомические образования в ЦНС и характерные только для него сенсорные коррекции.

Относительная степень развития отдельных координационных уровней у разных людей может быть различной. Поэтому та или иная степень развития и тренируемости свойственна не отдельным движениям, а целым контингентам движений, которыми управляет тот или иной уровень.

Таким образом, все многообразие двигательной активности человека представляет собой несколько раздельных пластов, различающихся по происхождению, смыслу и множеству физиологических свойств. Качество управления движениями обеспечивается согласованной, синхронной деятельностью ведущего и фоновых уровней. При этом ведущий уровень обеспечивает проявление таких характеристик, как переключаемостъ, маневренность, находчивость, а фоновые уровни – слаженность, пластичность, послушность, точность.

М.: Наука, 1990. — 496 с. — ISBN 5020052345.
В этот том вошли две основные книги Н. А. Бернштейна: первая "О построении движений" и вторая "Очерки по физиологии движений и физиологии активности". Именно эти книги подводят итог экспериментальной и теоретической работы ученого, ставшей классической и обессмертившей имя автора. Первая книга подытоживает в основном исследования, выполненные еще до войны. После "павловской" сессии 1950 г. у Бернштейна оказались связаны руки стало невозможно экспериментировать, однако он ведет большую теоретическую работу, завершившуюся созданием так называемой физиологии активности. Итог этой работы подведен им во второй книге "Очерки по физиологии движений и физиологии активности", которая увидела свет в 1966 г. в год смерти автора. Две первые главы книги "О построении движений" были повторены в этой работе в качестве IV и V очерков. При этом они были включены в новый контекст и соответственно несколько сокращены и отредактированы. (В настоящем издании они приведены в той редакции, которая соответствует книге "О построении движений", и опущены в книге "Очерков").
Содержание
От составителя (И.М.Фейгенберг)
О построении движений
Предисловие
Движения
О происхождении двигательной функции. Эволюционное значение двигательной функции. Обогащение координационных ресурсов. Развитие структур центральной нервной системы. Возникновение и развитие уровней построения движений. Координационные контингенты движений
О построении движений. Кинетические цепи тела и степени свободы подвижности. Трудности управления движениями системы с более чем одной степенью свободы. Основная задача координации. Значение упругости скелетных мышц и периферический цикл взаимодействий. Примеры осложненных соотношений между мышечными напряжениями и движением. Принцип сензорных коррекций. Рефлекторное кольцо. Внутренние, реактивные и внешние силы. Определение координации движений. Уровни построения движений. Ведущие и фоновые уровни. Опись уровней построения
Уровни построения движений
Субкортикальные уровни построения. Рубро-спинальный уровень палеокинетических регуляций A. Палеокинетическая и неокинетическая системы. Свойства нервного процесса в обеих системах. Синапсы неокинетической системы. Альтерационные смещения характеристик. Палеорегуляция неокинетического процесса. Субстраты рубро-спинального уровня A. Афферентации. Характеристический нервный процесс. Функции рубро-спинального уровня. Субординация. Мышечный тонус. Альфа-волны и палеокинетические регуляции. Самостоятельные движения и фоновые компоненты уровня A. Дисфункции
Субкортикальные уровни построения. Уровень синергий и штампов, или таламопаллидарный уровень B. Филогенез уровня B. Субстраты. Ведущая афферентация. Координационные качества. Самостоятельные движения. Фоновая роль. Дисфункции
Кортикальные уровни построения. Пирамидно-стриальный уровень пространственного поля C. Двойственность уровня C. Афферентация. Пространственное поле. Характер движений уровня C. Пространственная обусловленность движений. Вариативность, переключаемость, экстемпоральность. Субстраты. Самостоятельные движения. Фоновая роль. Дисфункции
Кортикальные уровни построения. Теменно-премоторный уровень действий D. Специфически-человеческая принадлежность уровня D. Группа апраксий. Субстраты. Афферентация. Смысловая структура действий. Пространство уровня действий. Эволюция взаимоотношений с предметом. Строение двигательных актов уровня D. Двигательный состав действий. Высшие автоматизмы. Роль премоторных систем. Сензорные и кинетические апраксии. Деавтоматизация. Классификация двигательных актов уровня D. Высшие кортикальные уровни. Уровни, лежащие выше уровня действий (группа E). Координационные свойства группы E
Развитие и распад
Возникновение и развитие уровней построения. Биогенетический закон и его ограничения. Эмбриогенез моторных центров мозга. Филогенез главных ядер мозга. Схема развития моторики позвоночных. Онтогенез моторики человека в первом полугодии жизни. Дозревание системы striatum. Онтогенез охватывания предмета. Развитие локомоций. Дозревание уровня действий. Развитие моторики в отрочестве. Пубертатный период
Развитие двигательных навыков. Условнорефлекторная теория развития двигательного навыка и ее ошибки. Определение двигательного навыка. Два периода развития навыка. Установление ведущего уровня. Определение двигательного состава. Выявление сензорных коррекций. Фаза автоматизации. Собственно фоны и автоматизмы. Переносы упражненности по навыку. Снижение порогов сигнальных рецепторов. Фаза срабатывания коррекций. Стандартизация. Три стадии развития навыков с синергетическими фонами. Динамически устойчивые движения. Дискретность и общечеловечность динамически устойчивых форм. Фаза стабилизации. Факторы, сбивающие автоматизацию. Возрастание переключаемости, переносы по органу и приему; генерализация навыка. Прелиминарные коррекции. Структура навыка письма. Развитие навыка письма. Реавтоматизация и врабатывание
Признаки уровневой структуры в патологии и в норме. Требования к признакам координационной структуры. Явления, обусловливающие сложность патологических синдромов. Влияние пункта поражения на рефлекторном кольце. Гиподинамии и эфференации. Гиподинамические синдромы по уровням. Персеверации. Персеверации в норме. Группирование признаков нормы по двум периодам развития навыка. Основные вопросы по уровневой структуре нормальных движений. Признаки точности и вариативности. Уровневые проявления признака точности.Уровневые характеристики деавтоматизирующих факторов
Очерки по физиологии движений и физиологии активности
От автора
К истории изучения движений
Циклограмметрический метод
Проблема взаимоотношений координации и локализации
Основное дифференциальное уравнение движения
Целостность и структурная сложность живого движения
Взаимоотношения координации и локализации
Экфория двигательных энграмм
Топология и метрика движений. Моторное поле
Принцип равной простоты
Координация движений в онтогенезе
Противоречия развития между филогенезом и онтогенезом
Развитие координационных систем в филогенезе
Развитие координации в раннем онтогенезе
Природа навыка и тренировки
Биодинамика локомоций (генез, структура, изменения)
Материал, исходные положения, техника
Основные структурные слагающие локомоторного акта
Генез биодинамической структуры локомоторного акта
Эскизы к качественному анализу биодинамических элементов локомоторного акта
Выводы к учению о координации движений
Назревшие проблемы регуляции двигательных актов
Управление, кодирование и моделирование в физиологии
Модели как средство изучения нервно-двигательных процессов
Пути и задачи физиологии активности
Новые линии развития в физиологии и биологии активности
Биомеханика для инструкторов
Именной указатель
Предметный указатель

Никола́й Алекса́ндрович Бернште́йн (24 октября (5 ноября) 1896, Москва - 16 января 1966, там же) - советский психофизиолог и физиолог, создатель нового направления исследований - физиологии активности. Сын психиатра Александра Николаевича Бернштейна, внук физиолога Натана Осиповича Бернштейна. Лауреат Сталинской премии (за 1947 год, присуждена в 1948)

Места работы

1920-?? - Донская психоневрологическая лечебница‎, психиатр

1924 - Центральный институт труда

1925-1927 - Московский государственный институт экспериментальной психологии

1930-е годы - Всесоюзный институт экспериментальной медицины им. А.М. Горького

Научный вклад

Концепция физиологии активности, созданная Бернштейном на основе глубокого теоретического и эмпирического анализа естественных движений человека в норме и патологии (спортивных, трудовых, после ранений и травм органов движения и др.) с использованием разработанных Бернштейном новых методов их регистрации, послужила основой для глубокого понимания целевой детерминации человеческого поведения, механизмов формирования двигательных навыков, уровней построения движений в норме и их коррекции при патологии. В работах Бернштейна получило свое обоснование решение психофизиологической проблемы в материалистическом духе с использованием последних достижений физиологической науки, а также отдельные идеи кибернетики.

Профессиональная научная деятельность началась в 1922 г. в Центральном институте труда (ЦИТ), где ему предложили работу в отделе научных изысканий.. Там же в биомеханической лаборатории ЦИТа Н.А. Бернштейн занялся разработкой общих основ биомеханики и уже к 1924 году подготовил к изданию обширный труд "Общая биомеханика". Николай Александрович разработал метод циклографии с использованием кинокамеры, который позволял подробно зафиксировать все фазы движения. В том же году Н. А. Бернштейн возглавил биомеханическую лабораторию ЦИТ и принял участие в работе первой международной конференции по научной организации труда в Праге (First International Management Congress in Prague, PIMCO; 20-24 июля, 1924), где сделал доклад об изысканиях в области физиологии труда.

С именем Н. Бернштейна связан современный этап развития биомеханики, его «физиология движений» составляет теоретическую основу этой науки.

Идеи Бернштейна нашли широкое практическое применение при восстановлении движений у раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др.

Звания и награды

Член-корреспондент Академии медицинских наук СССР.

За монографию «О построении движений» удостоен Сталинской премии (за 1947 год, присуждена в 1948).

Работы

Общая биомеханика (1926)

Проблема взаимоотношений координации и локализации (1935)

О построении движений (1947)

Очерки по физиологии движений и физиологии активности (1966)

Физиология движений и активность (1990)

О ловкости и её развитии (1991)

Процесс формирования двигательного навыка. Принцип активности и его развитие Н.А. Бернштейном (вклад в психологию)

Перейдём к важной теме, совершенно по-новому раскрытой Н. А. Бернштейном, - механизмам формирования навыка. Эта проблема очень важна для психологии, так как формирование навыков составляет, как вы уже знаете, основу всякого обучения.

Процесс формирования навыка описан у Бернштейна очень подробно. Он выделил много частных фаз - порядка семи, которые объединяются в более общие периоды. Для первого знакомства достаточно будет разобрать эти периоды.

В первый период происходит первоначальное знакомство с движением и первоначальное овладение им. С чего начинается обучение движению, т. е. каковы "горячие точки" формирования навыка на первых порах?

Все начинается, конечно, с выявления его двигательного состава, т. е. того, что и как надо делать: какие элементы движения, в какой последовательности, в каких сочетаниях надо производить. Например, когда рука толкает ядро, то что в это время делает корпус?

Как происходит знакомство с двигательным составом действия? Конечно, путем рассказа, показа, разъяснения, наблюдения. В этот период идет ознакомление с тем, как движение выглядит снаружи. Часто, если его показывает опытный мастер, создается иллюзия необыкновенной простоты и легкости выполнения. Однако, как правило, новичка ждет разочарование: движение совершенно не получается.

Часто в такую "ловушку" видимой легкости движения попадают дети. Вам, наверное, приходилось наблюдать их наивные, неловкие попытки воспроизвести только что увиденный танец, спортивное движение или какое-нибудь орудийное действие.

В чем же причина подобных неудач? Причина в том, что, как только движение начинается, на субъекта обрушивается поток совершенно непривычных сенсорных сигналов о нем. Этот поток идет от всех частей тела, со всех рецепторных поверхностей, и человек не может в них разобраться. Таким образом, следующая фаза первого периода (она наиболее трудоемкая) уходит на бесконечные повторения с целью прояснения внутренней картины движения. Одновременно человек учится пере-шифровывать афферентные сигналы в эффекторные команды. Накопление "словаря перешифровок" - одно из самых важных событий этого периода. Большое количество повторений здесь необходимо потому, что перешиф-ровки должны быть найдены в ответ на любые отклонения, на любые варианты движений. Как пишет Бернш-тейн, организм на этой фазе должен "наощущаться досыта", и каждая шишка или синяк - это болевой след от процесса накопления перешифровок.

Итак, если воспользоваться схемой рефлекторного кольца, то можно указать наиболее "горячие точки" первого периода. Ими будут события, происходящие в блоках: "программа", "задающий прибор" и "перешиф-фровки", т. е. соответственно, прояснение внешнего двигательного состава, внутренней картины движения и отработка правильных коррекций.

Последнее чрезвычайно важное событие, которым кончается этот период, состоит из первоначальной росписи коррекций по нижележащим уровням. В этом процессе надо специально разобраться.

Напомню, что, обсуждая в лекции "Неосознаваемые процессы" формирование навыка, я подчеркивала, что первоначальная отработка всех элементов, составляющих навык, происходит на уровне сознания. Очень часто она строится на уровне D, поскольку этот уровень наиболее доступен осознанию.

Интересно, что к помощи уровня D интуитивно прибегают педагоги и тренеры при первоначальной отработке движений, которые относятся к нижележащим уровням. Приведу два примера.

При обучении прыжкам на батуте очень важно с самого начала выработать правильную вертикальную стойку. Важная особенность этой стойки - максимальная вертикальная "растяжка" тела при взлете вверх с одновременным его раскрепощением. Последнее дается новичкам с трудом: они, как правило, "зажимают" корпус, напрягают плечи, наклоняют голову и т. п. Мне приходилось наблюдать, как опытный тренер подключал к отработке этого движения, по своему смыслу принадлежащего уровню В или даже А, уровень D через инструкцию: "Представьте себе, что из вашего затылка торчит шест и вы каждый раз, когда подлетаете вверх, стремитесь коснуться его концом потолка". Очевидно, что тем самым внимание ученика отвлекалось от позы тела на "предметную логику" положения и движения "шеста". Оказывалось, что, действуя в этой логике, обучающийся значительно легче достигал требуемой позы.

Другой пример относится к технике поворота на горных лыжах.

Одним из моментов, способствующих сохранению и даже увеличению скорости во время поворота, является довольно тонкое движение дополнительного "выталкивания" ступней ног вперед по ходу "выписывания" лыжами дуги. Уловить это движение помогает совет представить себя на качелях: раскачивание качелей достигается очень сходными движениями ног.

Подобные предметные образы помогают найти правильный внешний рисунок движения и отработать необходимые коррекции на уровне D. Однако по мере повторения начинают проясняться и осваиваться сигналы обратной связи на нижележащих уровнях. Как правило, они дают более тонкие и точные сведения о различных сторонах движения, недоступные ведению уровня D. Вас уже известно, что уровень А хорошо "осведомлен" о тонусе и равновесии тела, уровень B - о положении частей тела и т. д.

Попробуем на схеме кольца изобразить этот процесс подключения нижележащих уровней.

К сожалению, Н. А. Бернштейн только вербально соединил основные части своей концепции - схему кольца управления и теорию уровней, указав, что совместно работающие уровни можно представить себе как иерархическую систему колец. Он, однако, не оставил соответствующей схемы.

Попробуем гипотетически восполнить этот пробел на свой страх и риск. На рис. 8 изображены два кольца: верхнее принадлежит ведущему уровню, а нижнее - одному из фоновых уровней. На самом деле система колец должна быть более сложной: содержать не два, а несколько этажей и в каждом уровне - не одно, а много колец.

Однако рассмотрим только два соподчиненных кольца, как представляющих отношения ведущего и любого из нижележащих уровней.

Кольцу ведущего уровня принадлежит общая программа движения, все остальные блоки дублируются в кольце фонового уровня. В частности, у него свой "рецептор", через который поступают сигналы об аспектах движения, адекватных данному уровню, и часто сигналы другой модальности, чем сигналы ведущего уровня. Эффектор же у обоих колец общий - это, условно говоря, мышца, на которую сходятся сигналы управления с разных уровней.

Теперь рассмотрим какой-нибудь простой пример процесса формирования навыка, в котором явно видно подключение нижележащего уровня.

Обычно вы входите в свою комнату и включаете свет, не глядя на руку. Это движение для вас слишком привычно, и вы о нем специально не заботитесь.

Однако раньше, только осваивая это движение, вы, конечно, зрительно контролировали его. Оно строилось у вас на уровне C как движение, учитывающее метрику внешнего пространства и нуждающееся в зрительном контроле. Если ваша рука двигалась не совсем точно по направлению к выключателю, зрительные сигналы о ее отклонении перешифровывались в сигналы коррекции.

Однако одновременно вы получали сигналы обратной связи от мышечных рецепторов проприоцептивной модальности. Вначале они не несли функциональной нагрузки. Однако постепенно, по мере повторения движения, происходило формирование мышечного чувства правильного движения. Это было прояснение "внутренней картины" движения, которое уже обсуждалось выше. На схеме оно означает формирование SW нижнего кольца, которое должно отвечать SW кольца ведущего уровня. Теперь в нижнем кольце может начать функционировать прибор сличения и отрабатываться соответствующие пере-шифровки. Однако для этого в течение некоторого времени необходима полная задействованность ведущего уровня: он продолжает выполнять роль лесов для строящегося здания. В нашем примере это соответствует фазе, когда вы более уверенно и более точно протягиваете к выключателю руку, но все-таки вынуждены еще на нее посматривать.

Итак, события, которые завершают первый период, а именно прощупывание и роспись коррекций по фоновым уровням, на схеме изображаются подключением контуров управления нижележащих уровней.

Этот процесс непосредственно подходит ко второму периоду - автоматизации движения.

В течение этого периода происходит полная передача отдельных компонентов движения или всего движения целиком в ведение фоновых уровней. В результате ведущий уровень частично или полностью освобождается от заботы об этом движении.

Как образно пишет Н. А. Бернштейн, на этом этапе окрепшие фоновые уровни "отталкивают от себя руку ведущего уровня", как ребенок, научившийся плавать, отталкивает руку взрослого, до тех пор поддерживавшую его.

В этот же второй период происходят еще два важных процесса: во-первых, увязка деятельности всех низовых уровней, ведь, как уже говорилось, должна отдалиться сложная иерархическая система многих колец; во-вторых, "рекрутирование" готовых двигательных блоков.

Дело в том, что низовые уровни всякого организма, имеющего за плечами большую двигательную историю, не немы и не пусты. В них уже существуют функциональные системы (блоки), которые выработались по другим поводам. Если при освоении нового движения организм обнаруживает необходимость в определенного типа перешифровках, то он иногда ищет их в буквальном смысле, ищет и находит их в своем готовом словаре. Этот словарь Н. А. Бернштейн называет "фонотекой", причем первую половину слова он предлагает понимать не как латинский корень, означающий "звук", а буквально как "фон". Каждый организм имеет свою "фонотеку", т. е. набор фонов, и от его объема зависят его двигательные возможности и даже способности.

Показательно, что рекрутируемый блок может быть извлечен из движения, которое совершенно не похоже на то движение, которое осваивается. Например, при обучении езде на двухколесном велосипеде, как показывает анализ, очень полезен оказывается навык бега на коньках, потому что в обоих типах движений имеются внутренние одинаковые элементы. Это перешифровки, обеспечивающие поддержание равновесия в условиях очень узкой опоры.

Именно рекрутированием готовых блоков объясняются те качественные скачки и "ага-реакции", которые иногда наблюдаются при овладении новым движением.

Наконец, последнее замечание, очень важное для характеристики этого периода. Вы уже знаете, что по мере автоматизации движения, последнее уходит из-под контроля сознания. Так вот субъект может и должен помочь этому процессу "ухода" из сознания. Если в течение первого периода субъекту нужно максимально включаться в движение - вдумываться и вчувствоваться в него, пристально следить за каждым его элементом и т. п., то теперь следует делать прямо противоположное: перестать обращать внимание на движение. Используя метафору Н. А. Бернштейна, скажем так: необходимо помочь ребенку, который уже почти научился плавать, оттолкнуть руку взрослого.

С этой целью тренеры и педагоги используют целый ряд приемов. Например, предлагают ускорить темп движения или непрерывно повторять его много раз подряд. Но самый эффективный прием состоит в том, чтобы включить данное движение в более сложную двигательную задачу, т. е. сделать так, чтобы оно выступило уже не как самоцель, а как средство решения более общей задачи.

Наконец, в последний, третий, период происходит окончательная шлифовка навыка за счет стабилизации и стандартизации.

Что такое стабилизация? Это более или менее понятно: навык обретает такую прочность, что не разрушается ни при каких обстоятельствах. Если в период первоначальной автоматизации движение могло выполняться чисто только находясь "под стеклянным колпаком", т. е. в стандартных условиях, то в этот период оно приобретает высокую помехоустойчивость. Например, футболист может играть при дожде на скользкой траве, теннисист - при ветре, слаломист может проходить трассу по ледяному склону или по буграм и т. п.

За счет чего приобретается такая помехоустойчивость? За счет того, что к этому моменту организм уже опробовал массу отклонений, которые вызывались внешними и внутренними помехами. Все они были отработаны, и теперь на каждый возможный случай у него имеется запас соответствующих коррекций.

Что касается стандартизации, то под ней имеется Б виду приобретение навыков стереотипности. В этот период при многократном повторении движения получается серия абсолютно одинаковых копий, напоминающих, по образному выражению Н. А. Бернштейна, "гвардейцев в строю". Обеспечивает эту стереотипность помимо автоматизации еще один механизм, который тоже очень талантливо описал Бернштейн.

Он относится, в основном, к движениям темповым, высоко амплитудным, во время которых развиваются выраженные реактивные и инерционные силы.

Когда движение осуществляется с большой скоростью и большой амплитудой, то названные силы начинают существенно на него влиять. Влияние это может быть двояким: силы могут либо мешать движению, разрушать его, либо рационально использоваться и помогать ему. Так вот стереотипность навыков появляется благодаря тому, что организм научается эффективно использовать реактивные и инерционные силы. Достигается это за счет нахождения динамически устойчивой траектории. Динамически устойчивая траектория - это особая, уникальная линия, при движении по которой развиваются механические силы, способствующие продолжению движения в выбранном направлении. Благодаря им движение и приобретает легкость, непринужденность и стереотипность.

На этом мы заканчиваем обсуждение процесса формирования навыка.

В заключение я хочу остановиться на разработке Н. А. Бернштейном принципа активности. Все основные положения его концепции, как вы уже могли понять, взаимосвязаны. То же относится и к принципу активности: он является, по существу, обобщением и развитием основных представлений о механизмах организации движений. Соответственно к обобщенной формулировке этого принципа Н. А. Бернштейн пришел в последний период своей жизни.

Вы уже знаете, что суть принципа активности состоит в постулировании определяющей роли внутренней программы в актах жизнедеятельности организма. Принцип активности противопоставляется принципу реактивности, согласно которому тот или иной акт - движение действие - определяется внешним стимулом.

Надо сказать, что принцип реактивности владел умами естествоиспытателей и философов материалистического направления в течение не одного века. Он был прочно связан с идеей детерминизма и имел прогрессивное значение. Он интенсивно разрабатывался в физиологии XIX и начала XX в., а также в психологии в эпоху бихевиоризма; следы его сохраняются и до сих пор.

Что касается принципа активности, то для материалистического естествознания он явился достаточно новым.

Рассмотрим, следуя за развитием идей Н. А. Бернштейна, несколько аспектов принципа активности: конкретно-физиологический, общебиологический и философский.

В конкретно-физиологическом плане принцип активности неразрывно связан с открытием принципа кольцевого управления движениями. Как только была осознана необходимость участия сигналов обратной связи в организации движений, прояснилась и решающая роль центральной программы: ведь сигналы обратной связи сличаются с сигналами, которые поступают из программы. Наличие программы - необходимое условие функционирования кольца; без программы и задающего устройства нет смысла в кольце управления, достаточно дуги. Но по механизму дуги, как мы теперь уже знаем, не может совершаться целесообразный акт.

Таким образом, принцип активности в конкретно-физиологическом выражении и механизм кольцевого управления движениями - это прочно связанные между собой теоретические постулаты.

Теперь на том же конкретно-физиологическом уровне обсудим некоторые трудные вопросы, которые ставят перед защитниками принципа активности его критики.

Один из них следующий: "А разве нет реактивных процессов - движений, построенных по типу реакции?" Например, прозвенел звонок - я вошла в аудиторию; я вошла - вы встали; вы встали - я сказала: "Здравствуйте". Здесь наблюдается уже целая цепь реакций. А поскольку реакции как явления есть, надо корректно описать и их механизмы.

У Н. А. Бернштейна есть ответ на этот вопрос. Он предлагает расположить все движения, которые имеются у животного или человека, в ряд на некоторой воображаемой оси по степени определяемости его внешним стимулом. Тогда на одном конце этого ряда окажутся безусловные рефлексы типа чихательного, мигательного, коленного (они запрограммированы морфологически), а также сформированные при жизни условные рефлексы типа выделения слюны у собаки на звонок. Эти движения, или акты, действительно, запускаются стимулом и определяются его содержанием.

Следующими в этом ряду окажутся движения, которые тоже включаются внешним стимулом, но уже не так жестко связаны с ним по содержанию. Например, когда я вошла, то вы встали не все - здесь уже нет ни безусловно- ни условно-рефлекторного акта. Или, например, получив удар, человек может отреагировать различным образом: тоже ударить в ответ или "подставить другую щеку".

Итак, возможны вариации ответных движений; нет их жесткой запрограммированности, жесткой связанности со стимулом. Это акты, в которых стимул приводит не к движению, не к действию, а скорее к принятию решения о действии. В этих случаях он выполняет роль спускового крючка. Он "включает" одну из возможных альтернативных программ. Такого типа акты занимают промежуточное положение в нашем воображаемом ряду.

И наконец, на другом крайнем полюсе оказываются акты, для которых, как пишет Бернштейн, и инициатива начала и содержание, т. е. программа, задаются изнутри организма. Это так называемые произвольные акты.

Таким образом, на вопрос: "Как же быть с реакциями, существуют ли они?" - ответ однозначен: "Да, конечно существуют, но они представляют собой частный, "вырожденный" случай активности". Подобно тому как покой есть вырожденный случай движения - движения с нулевой скоростью, безусловно-рефлекторные реакции - это акты с нулевой степенью активности, и они составляют очень небольшую часть всех актов жизнедеятельности. Многие жизненно важные действия относятся к промежуточному и крайне правому положению на толь ко что описанной оси.

Теперь второй, более тонкий вопрос. Когда функционирует "кольцо", то блок сличения принимает два потока сигналов: от внешней среды и от программы. И эти два потока занимают как бы симметричное положение. Почему нужно отдавать предпочтение программным сигналам и считать, что определяют движение именно они, а не сигналы от внешней среды, которые действуют по реактивному принципу?

Вопрос этот звучит справедливо, если на процесс смотреть с точки зрения статической картины. А вот если

обратиться к временной развертке процесса, то положение окажется не таким уж симметричным. Командные сигналы из блока программы опережают сигналы обратной связи. Они идут, так сказать, на полкорпуса впереди.

Как это можно показать? Воспользуюсь примером из Бернштейна. Я начну диктовать вам хорошо известное стихотворение: "Как ныне сбирается вещий..." - и специально задерживаюсь, чтобы вы почувствовали внутреннее звучание следующего слова - "Олег". Когда же вы декламируете текст стихотворения непрерывно, то можете заметить, что его текущая программа идет обычно на 2-3 слова впереди. Вы как бы слышите опережающий (планирующий) текст.

Вы можете заметить мне, что наличие опережающей программы - факт достаточно эфемерный: он основан на самонаблюдении, и никаких более осязаемых материальных доказательств его нет. Однако это не совсем так.

Например, когда человек читает вслух текст, можно одновременно записать его голос и положение его глаз. И вот оказывается, что существует достаточно заметное рассогласование между тем словом, на которое он сейчас смотрит, и тем словом, которое он произносит. Например,. он произносит "вещий Олег", а глаза у него - на словах "неразумным хазарам", а может быть и еще дальше. Это рассогласование называется глазо-голосовым объемом, оно отражает объем материала, который находится между программируемым и отрабатываемым текстом.

Или возьмем другой пример: описки или оговорки. С именем З. Фрейда связан только один их вид - тот, который определяется скрытыми мотивами и намерениями. Но они могут возникать и по другой причине, а именно из-за преждевременного вторжения сигналов программы. Обычно этому способствуют утомление, волнение или спешка.

Приведу примеры. При подготовке данной лекции, когда я делала письменные заметки, судьба преподнесла мне несколько подобных описок. Приведу их, снабдив соответствующими исправлениями.

Итак, существуют доказательства (субъективные и объективные) того, что сигналы, исходящие из программы (т. е. "активные") и поступающие из внешней среды (т. е. "реактивные"), функционально несимметричны в том смысле, что первые опережают вторые.

Но несимметричность их имеет еще один, более важный аспект. Как показал Н. А. Бернштейн, "активные" сигналы обеспечивают существенные параметры движения, а "реактивные" - несущественные, технические детали движения.

Эту мысль можно хорошо проиллюстрировать на движениях уровня D. Вы уже знаете, что движения уровня D очень легко приспосабливаются к внешним обстоятельствам.

Например, если вам нужно вывернуть шуруп и у вас нет отвертки, а на глаза попадается перочинный нож, то вы пытаетесь воспользоваться лезвием ножа. При этом ваше действие в общих чертах строится так, как если бы вы работали отверткой, но оно прилаживается к свойствам ножа. Двигательное оформление действия, его технические подробности - это несущественные переменные, а его принципиальная структура - существенная переменная. Изменить последнюю нельзя. Например, вы не можете взять клещами шуруп и потянуть его как гвоздь; вы должны сообразоваться с логикой этого предмета, т. е. обязательно его отвинчивать.

Это сообразование с логикой предмета и определяется программой, которая задает общий план действия, и только благодаря этому действие оказывается выполнимым в осложненных условиях.

Итак, оба вида сигналов несимметричны и с качественно-функциональной стороны.

Наконец, последний вопрос связан с трудностью преодоления одного старого и прочно укоренившегося заблуждения. Оно состоит во взгляде на стимул как на агент, автоматически действующий на организм.

Когда изображается "дуга" реакции, то на орган чувств направляется стрелка, которая изображает "поступивший" стимул, и этот момент никак специально не обсуждается - вроде бы и так очевидно, что раз стимул есть, значит он действует.

На самом деле в жизни происходит иначе. Вообще говоря, в случае резкого удара или яркой вспышки стимул и в самом деле действует автоматически, наподобие толчка. Представьте себе: тишина - и вдруг резкий звонок будильника, это стимул-толчок. И вот применительно только к таким случаям можно рисовать стрелку, идущую от стимула на орган чувств. Обычно же бывает совершенно иначе.

Во-первых, обычно субъект или организм погружен в целое море внешних воздействий, которые без конца "бомбардируют" его; во-вторых, он выбирает стимулы, а не они его.

В связи с этим расскажу одну историю. Однажды в частной беседе несколько психологов обсуждали противопоставление принципов активности и реактивности, разгорелась дискуссия. "А все-таки принцип реактивности очень хорош, - сказал один из коллег,- он прозрачен, ясен, правильно описывает события. Вот, например, лежит на столе ручка - я ее беру. Что произошло? Ручка подействовала на мои глаза, последовало мое движение, я ее взял".

Пример действительно прост и ясен, но он может быть обращен как раз против принципа реактивности. И вот каким образом.

Кандидат технических наук В. ЛЕВИН.

Пройдет не так много лет после его смерти, и склонные к скепсису англичане провозгласят развитие теории движений эпохой Николо Бернштейна
В. Л. Найдин ("Наука и жизнь" № 6, 1976 г.).

Профессор Н. А. Бернштейн (1896-1966) - основоположник современной биомеханики.

Н. А. Бернштейн во время эксперимента в своей лаборатории.

При съемке циклограммы на различных частях тела спортсмена укрепляют электрические лампочки. По светящимся точкам, представляющим отдельные фазы, строят непрерывную траекторию, на которой лучше видны погрешности движения спортсмена.

Одна из последних фотографий Н. А. Бернштейна.

В 1996 году в мире отмечали 100-летие со дня рождения Н. А. Бернштейна, создателя современной биомеханики - учения о двигательной деятельности человека и животных. К этой дате были приурочены научные конференции в США и Германии. В работе международной конференции в университете штата Пенсильвания (США) приняли участие 200 специалистов из США, Германии, Японии. Россиянин В. П. Зинченко выступил с докладом "Традиции Н. А. Бернштейна в изучении управления движениями". Вот как рассказано об этом в "Книге странствий" Игоря Губермана: "На обеих этих конференциях был его ученик, которого молодые ученые издали оглядывали с почтительным изумлением, довольно различимо шепча друг другу: "Он знал его при жизни, это фантастика!". Только Россия, похоже, все еще не может осознать, что в ней родился и жил загнанный и непризнанный при жизни гений, идеи которого уже давно проходят во всех университетах мира как классические".

Литератор И. Губерман известен своей склонностью к гротеску, к эпатажу, но в данном случае в его словах - искренняя горечь. Ведь в России, на родине Н. А. Бернштейна, юбилей ученого официально не отмечали, лишь журнал "Теория и практика физической культуры", предназначенный для достаточно узкого круга специалистов, целиком посвятил ему один из номеров. Удивительная личность этого человека и огромный его вклад в мировую науку заслуживают гораздо большего внимания.

ПРЕДТЕЧИ

Слово "биомеханика" означает "движение живого". Мы с удивлением и восторгом наблюдаем, как летящие за кормой теплохода чайки камнем падают вниз и на лету хватают кусочки хлеба, которые бросают им пассажиры. Мы приходим в восхищение от легкого и в то же время мощного движения мчащейся галопом лошади, от изящных изгибов тела ползущей змеи. Но в сравнении с животными человек представляет собой гораздо более совершенное уникальное существо по разнообразию, сложности и точности движений.

Раскрыть тайну движения живого пытались еще мыслители древности. Первые труды в этой области написаны Аристотелем (384-322 гг. до н. э.), которого интересовали закономерности движения наземных животных и человека. Проблемы биомеханики занимали римского врача Гален (131-201 гг. н.э.), Леонардо да Винчи (1452-1519), Джованни Борелли (1608-1679), ученика Галилея и автора первой книги по биомеханике "О движениях животных", вышедшей в свет в 1679 году. Природа движений, механизм управления ими занимали многих отечественных ученых: И. М. Сеченова (1829-1905), И. П. Павлова (1849-1936), П. Ф. Лесгафта (1837-1930), А. А. Ухтомского (1875-1942).

Но настоящую революцию в биомеханике совершил Николай Александрович Бернштейн. Он не только создал теорию о двигательной активности животных и человека, но и превратил ее в инструмент познания работы мозга.

ПРОИСХОЖДЕНИЕ

Есть шутливая формула, что интеллигентом может считать себя человек, имеющий три высших образования, причем первое должен получить его дед, второе - отец и третье - он сам. В любой шутке есть доля правды, и Н. А. Бернштейн по своему происхождению может на полном основании считать себя интеллигентом.

Его дед, Натан Осипович Бернштейн, был врачом-физиологом. Окончив медицинский факультет Московского университета, в 1865 году стал приват-доцентом, а затем профессором по кафедрам анатомии и физиологии Новороссийского университета в Одессе. Когда в 1871 году в университет пришел Иван Михайлович Сеченов, Натан Осипович передал ему кафедру физиологии, оставив за собой только анатомию.

Сын Н. О. Бернштейна, Александр Николаевич (Натанович), - известный московский психиатр, ученик С. С. Корсакова. Вопросы психиатрии и психологии он связывал с физиологией, базировавшейся на передовых для того времени идеях И. М. Сеченова. А. Н. Бернштейн основал в Москве клинику для психиатрической помощи больным, оказавшимся по каким-либо причинам в полиции. По иронии судьбы эта клиника при советской власти была превращена в Институт имени Сербского. Название это стало нарицательным как символ карательной психиатрии - именно здесь ставили диагнозы умалишенных людям, не согласным с политикой КПСС и советского правительства.

Дядя Н. А. Бернштейна, Сергей Натанович, был выдающимся математиком. Учился в Сорбонне, а затем в Геттингене. В 1917 году получил звание профессора, а в 1929-м был избран академиком академии наук СССР. В 1955 году Парижская Академия наук избирает его своим иностранным членом.

Мать Николая Александровича, Александру Карловну, все считали незаурядным человеком с сильным характером. Стремясь к самостоятельности, она ушла из дома и работала сначала ткачихой в Твери, затем санитаркой в земской больнице. Позже стала операционной сестрой и, наконец, сестрой милосердия в психиатрической клинике, где и познакомилась со своим будущим мужем.

Н. А. Бернштейн родился 24 октября (5 ноября) 1896 года, а в 1901 году Александра Карловна родила второго сына - Сергея. После этого мать оставила работу, целиком посвятив себя воспитанию сыновей. Александр Николаевич также много времени уделял детям. Семья была очень дружной. В дом приходили интересные люди. Темы разговоров были самые разные: медицина, психика человека, социальные проблемы, искусство, музыка. Неудивительно, что братья в детстве отличались широтой интересов. Как и все мальчишки того времени, они буквально бредили железной дорогой, ездили на "паровозное кладбище", где Николай изучал устройство паровозов и вагонов, делал зарисовки. Дома из деталей детского конструктора оба строили модели разных машин, мостов и даже Эйфелевой башни. Это увлечение сохранилось и в зрелом возрасте. Сергей стал инженером-мостостроителем, а впоследствии заведовал кафедрой строительной механики в Академии бронетанковых войск. Для Николая мосты были своего рода хобби, хотя он посвятил им ряд статей в научно-популярной литературе (см. "Наука и жизнь" № 5, 1965 г.; № 2, 1966 г.).

Мать старалась привить детям интерес к музыке и языкам. Николай свободно играл на рояле с листа, был поклонником А. Н. Скрябина. Он окончил Медведниковскую гимназию с расширенным курсом естественных наук и математики. В ней также обучали французскому, немецкому, английскому языкам, латыни. Дома Николай и Сергей дополнительно занимались языками с частным преподавателем. Позднее, в студенческие годы, Николай изучил польский и итальянский языки.

В 1914 году Николай поступил на историко-филологический факультет Московского университета. Но не успел приступить к занятиям - началась Первая мировая война. Он пошел работать санитаром в московский лазарет, а затем перешел на медицинский факультет. После окончания университета был направлен врачом в части, воевавшие против Колчака.

ПЕРВЫЕ ШАГИ В НАУКЕ

В 1921 году, после окончания Гражданской войны, Николай Бернштейн демобилизовался из армии и начал работать сразу в двух клиниках: в одной - психиатром, в другой - отоларингологом. В том же 1921 году в Москве был создан Центральный институт труда (ЦИТ). Его директором назначили А. К. Гастева, энтузиаста научной организации труда, поэта и романтика (в разгар сталинского террора 1938-1941 годов он сгинул в лагерях). Директор поставил перед сотрудниками задачу разработать теорию управления движениями человека - биомеханику.

Гастев писал: "Первая наша задача состоит в том, чтобы заняться той великолепной машиной, которая нам близка, - человеческим организмом. Эта машина обладает роскошью механики - автоматизмом и быстротой включения. Ее ли не изучать? В человеческом организме есть мотор, "передача", амортизаторы, есть тончайшие регуляторы и даже манометры. Все это требует изучения и использования. Должна быть особая наука - биомеханика. Эта наука может и не быть узко "трудовой", она должна граничить со спортом, где движения сильны, ловки и в то же время воздушно легки, артистичны".

Создать основы этой науки, которая теперь обязательно используется при разработке систем тренировок людей самых разных профессий - от шофера до космонавта, было суждено молодому врачу Николаю Александровичу Бернштейну.

В 1922 году ему предложили работу в отделе научных изысканий ЦИТа, в биомеханической лаборатории. Н. А. Бернштейн занялся разработкой общих основ биомеханики и уже к 1924 году подготовил к изданию обширный труд "Общая биомеханика". Николай Александрович разработал метод циклографии с использованием кинокамеры, который позволял подробно зафиксировать все фазы движения. В том же году Н. А. Бернштейн возглавил биомеханическую лабораторию и принял участие в работе первой международной конференции по научной организации труда в Праге, где сделал доклад об изысканиях в области физиологии труда.

Методика циклограмметрических исследований с использованием фото- и кинотехники, примененная Н. А. Бернштейном в ЦИТе, помогала найти наиболее рациональные способы обучения рабочих. Циклограмметрические данные получали с помощью рапидной киносъемки (100-200 кадров в секунду) и последующих высокоточных измерений. Погрешность измерения мгновенных положений движущихся частей тела идущего или бегущего человека составляла 0,5 мм. Говоря современным языком, он создал фазовый портрет движений, который затем можно было анализировать.

С помощью циклограмм ученому удалось по-новому организовать тренировки спортсменов. Проанализировав технику бега тогдашнего мирового рекордсмена Жюля Лядумега из Франции, Н. А. Бернштейн в 1934 году помог братьям Георгию и Серафиму Знаменским значительно улучшить результаты.

Применил свою методику Н. А. Бернштейн и для изучения игры на фортепиано. Он изготовил циклограммы движений пальцев 14 крупных советских и зарубежных пианистов, в том числе Константина Игумнова, Генриха Нейгауза и Эгона Петри. Разумеется, Бернштейн не вторгался в эмоциональную сферу исполнения, а результаты исследований остались просто как иллюстрации совершенной техники движения рук блестящих музыкантов.

Все эти научные материалы легли в основу руководства "Техника изучения движений", составленного его помощниками Г. С. Поповой и З. Н. Могилевской.

Следует напомнить, что в те годы термин "биомеханика" стали употреблять и в театральном искусстве. В. Э. Мейерхольд предлагал строить актерскую игру по аналогии с трудовыми процессами, в которых нужно умело чередовать нагрузку и отдых. Режиссер ставил перед актером задачу изучать законы движения, механику своего тела, что, по его мнению, помогало не допускать лишних, непроизвольных движений. Но никакой набор прекрасно отработанных жестов не может заменить внутреннее эмоциональное состояние актера. Это противоречило взглядам Н. А. Бернштейна, который не посягал на исследование с помощью своей методики манеры и стиля игры исполнителей. Никоим образом не умаляя выдающегося вклада В. Э. Мейерхольда в театральное искусство, нужно отметить, что его "биомеханика" не имела ни малейшего отношения к научному направлению, которое разрабатывал Н. А. Бернштейн.

ОТ МЕХАНИКИ К ТЕОРИИ УПРАВЛЕНИЯ

Н. А. Бернштейн первым в мировой науке понял, что изучение движений - своеобразный ключ к познанию закономерностей деятельности мозга. До тех пор движения человека изучали лишь в их внешнем проявлении, а он поставил перед собой задачу понять, как работает мозг, управляя ими.

Бернштейн считал себя учеником И. М. Сеченова, который еще в XIX веке предположил, что управление движениями человека сводится к непрерывной коррекции перемещения звена (например, руки или ноги), осуществляемой центральной нервной системой на основании сигналов от органов зрения, слуха или осязания. Николай Александрович понял, что нервная система, "подав команду" на начало какого-нибудь движения, никогда не оставляет его без контроля и в случае необходимости немедленно корректирует. В 1928 году такое явление он назвал "сенсорной коррекцией". Это фундаментальное понятие в теории управления, которое двадцать лет спустя Норберт Винер, создавая основы кибернетики, назвал обратной связью. Кстати, когда в 1960 году Норберт Винер находился в Москве, Бернштейна познакомили с ним. Николай Александрович подарил Винеру свою статью 1935 года, в которой он, еще не применяя терминологию кибернетики, сформулировал основные идеи этой науки. Там он, в частности, утверждал, что живой организм, как и искусственное устройство, предложенное Винером, строится по иерархическому принципу с использованием прямых и обратных связей, программ и т.п. Норберт Винер не отрицал заслуг Бернштейна и в дальнейшем принимал деятельное участие в издании его работ в Англии.

ТЕОРИЯ - НЕ ДОГМА

Результаты исследований позволили Н. А. Бернштейну с иной точки зрения взглянуть на теорию рефлексов, созданную И. П. Павловым. Академик полагал, что рефлексы (от латинского reflexus - повернутый назад, отраженный), то есть реакции организма на раздражение рецепторов, проходят по нервной дуге от органов чувств к мозгу, а от него к мышцам и железам. Врожденные рефлексы И. П. Павлов назвал безусловными, а вырабатываемые в течение жизни - условными. Но павловская дуга не замыкалась в рефлекторное кольцо, характерное для управляемого процесса, она не содержала обратной связи, то есть не учитывала непрерывного контроля за действием и его результатом.

Подвергал критике Н.А. Бернштейн и теорию И. П. Павлова о второй сигнальной системе, якобы свойственной только человеку и отличающей его от животных. По Павлову, эта система условно-рефлекторных связей формируется при воздействии речевых сигналов, то есть не непосредственного раздражителя, а его словесного обозначения. Николай Александрович отмечал, что с помощью слов животные дрессируются так же легко, как и с помощью других сигналов - света, звука, запахов. Он считал, что элементы речи, из которых у человека образовалась категория имен, не могут нести сигнальной функции и не образуют никакой системы. В то же время он утверждал, что "слова и речь как отражение внешнего мира в его статике (имена) и динамике действий и взаимодействий с субъектом (глаголы, суждения) действительно образуют систему, доступную и свойственную только человеку". Идеи Бернштейна не разрушали учения Павлова, а только уточняли, углубляли и продолжали его.

В начале 1930-х годов Н. А. Бернштейн встретился с И. П. Павловым. Беседа продолжалась более трех часов, но они не поняли друг друга. В ответ на расспросы своих сотрудников каждый резко отозвался о собеседнике. Свои возражения академику Н. А. Бернштейн изложил в работе "Современные искания в физиологии нервного процесса". Во Всесоюзном институте экспериментальной медицины в 1936 году была запланирована их очная дискуссия. Но Павлову не суждено было дожить до нее. Узнав, что его оппонент больше никогда не сможет ему ответить, Николай Александрович отдал в типографию распоряжение рассыпать набор уже готовой книги.

КООРДИНАЦИЯ - КРАЕУГОЛЬНЫЙ КАМЕНЬ ТЕОРИИ ДВИЖЕНИЙ

Помните шутливый детский вопрос: как сороконожка управляет всеми своими сорока ножками? А двигательный аппарат человека представляет собой самодвижущийся механизм, состоящий приблизительно из 600 мышц, 200 костей и нескольких сотен сухожилий. Это вам не сороконожка! Бернштейн нашел строгий научный ответ на этот вроде бы шутливый, но на самом деле очень серьезный вопрос. Он создал теорию координации движений, задачей которой считал преодоление избыточных степеней свободы движущегося органа, иными словами - превращение его в управляемую систему.

Дело в том, что кости человека, скажем, в руках, скреплены между собой суставами, имеющими по две, а плечевой даже три оси вращения. Поэтому кисть имеет возможность перемещаться по множеству независимых траекторий. И это только одна кисть, а у человека их две, а на каждой из них по пять пальцев, состоящих из трех фаланг. Все же звенья тела человека, учитывая подвижность корпуса, обладают объемом возможных движений, выражающимся трехзначным числом. А насколько сложны движения глазного яблока, которые позволяют следить за движущимися предметами и обеспечиваются работой 24 глазных мышц!

Каждое конкретное движение человек совершает, преодолевая избыточные степени свободы, и делает это, по мнению Н. А. Бернштейна, благодаря координированному управлению элементами двигательного аппарата.

Здесь идеи Бернштейна вновь вступили в противоречие с теорией Павлова, который считал, что поведение живых существ представляет собой непрерывные ответные реакции на информацию, поступающую из постоянно меняющегося мира. Эта информация воздействует на органы чувств и пробуждает возникшие ранее многочисленные безусловные и условные рефлексы, которые и определяют поступки и действия животных и человека. Такое объяснение отвечало далеко не на все вопросы, связанные с работой мозга. Да и сам Павлов это понимал.

Бернштейн в своих рассуждениях развивал одну из догадок И. М. Сеченова о том, что мозг не воспринимает пассивно информацию из окружающего мира и не только отвечает на нее действием, а сам активно воздействует на мир. Он непрерывно создает прогностическую модель будущего, основанную на вычислении вероятности. Бернштейн понимал, что мозгу заранее известна цель любого действия. Эта цель служит причиной для начала действия, и она меняется и корректируется в самом процессе этого действия на основе обратных связей, то есть постоянно поступающих сообщений "с мест" о достигнутом результате действия. Как в упомянутом выше примере кормления чаек, когда птица, увидев летящий кусок, "вычисляет" его возможную траекторию, сопоставляет ее с направлением и скоростью своего полета, и затем мозг отдает команду мышцам, чтобы те направили тело в ту точку, где клюв встретится с куском хлеба. Человек отличается от остального животного мира лишь тем, что у него принцип активности, боевой самоорганизации стал осознанным и формируется, кроме всего прочего, в членораздельной речи, письме и т. д. Суть теории активности Николай Александрович очень точно выразил в заглавии своей статьи "От рефлекса к модели будущего", написанной им в последний год жизни.

Координация движений, по мысли Бернштейна, осуществляется по иерархической лестнице. Это происходит примерно так же, как при проведении военных операций. Генерал не следит за действиями каждого солдата, он ставит общую задачу перед командирами частей. Те в деталях доносят ее до командиров подразделений, и уже младшие командиры ведут в бой солдат, старясь занять ту или иную высоту, тот или иной населенный пункт. В мозгу также имеется группа нейронов, которая определяет общую стратегию движения. Группы нейронов второго уровня организуют порядок и последовательность ввода в действие групп мышц, а группы еще более низкого уровня посылают импульсы мышцам.

В годы Великой Отечественной войны и сразу после ее окончания идеи Бернштейна о построении движений были использованы для восстановления двигательной активности раненых.

ПРЕСЛОВУТЫЙ ПЯТЫЙ ПУНКТ

Свои открытия Н. А. Бернштейн изложил в книге "О построении движений", вышедшей в 1947 году. А в 1948 году он стал лауреатом Сталинской премии и был избран членом-корреспондентом Академии медицинских наук. Но вскоре началась кампания расправы с интеллигенцией. Генетика и кибернетика были объявлены буржуазными лженауками, пострадали писатели Анна Ахматова и Михаил Зощенко, великие композиторы Сергей Прокофьев и Дмитрий Шостакович. Власти развернули борьбу с так называемыми "безродными космополитами", а если выражаться без экивоков, то начали преследование евреев.

В области физиологии расправа с прогрессивными учеными шла под лозунгами верности павловскому учению, превращенному одновременно и в икону и в дубину. Разумеется, Н. А. Бернштейн попал под удар, причем оказался дважды виноватым - осмелился спорить с идеями Павлова и был евреем. Перед тем как выгнать со всех мест работы, его "прорабатывали" на собраниях. Он сам рассказывал, как одна наивная девочка, аспирантка, выступила и со слезами на глазах сказала: "Вы, наверное, так ругаете Николая Александровича, потому что думаете, что он еврей, да?" - на что в ответ в зале дружно засмеялись.

В 1950 году во время объединенной сессии Академии наук СССР и Академии медицинских наук (известной как "Павловская сессия") работы Бернштейна были подвергнуты жестокой критике. Его обвиняли в том, что в своей книге "О построении движений", за которую, напомним, два года назад получил Сталинскую премию, не было ссылок на труды И. П. Павлова. Вскоре его уволили, и до самого конца жизни он больше не имел лабораторной базы для работы.

ВСЕ ПОТЕРЯНО, КРОМЕ ЧЕСТИ

В то зловещее время был заведен такой порядок: если человека и не сажали, то его по крайней мере лишали куска хлеба. Ахматову и Зощенко, например, просто перестали печатать. Николая Александровича спасало блестящее знание еще с детских лет иностранных языков. Он несколько лет перебивался тем, что писал рефераты статей из иностранных научных журналов. Николай Александрович шутил: "Удивительная работа! Целый день читать интересные книги, и за это еще получать деньги". Как-то один из приятелей спросил: "Вы до сих пор нигде не работаете?". "Что вы, - ответил Николай Александрович, - я все время работаю, я просто до сих пор нигде не служу". Друга Н. А. Бернштейна, известного психолога А. Р. Лурию, попросили передать Николаю Александровичу предложение покаяться, за что обещали смягчить наказание. "Лучше я умру!" - был ответ.

В годы травли некоторые прежде даже близкие коллеги Бернштейна боялись здороваться с ним при встрече. А вот К. И. Чуковский, который лично его не знал, после ругательной статьи в "Правде" демонстративно пришел к Николаю Александровичу домой, чтобы пожать руку. Об этом эпизоде помнит приемная дочь ученого Татьяна Ивановна Павлова:

В начале 1950-х годов знакомые, встретив попавшего в опалу человека, боялись с ним поздороваться и часто переходили на другую сторону улицы, чтобы не столкнуться лицом к лицу. Николай Александрович прекрасно понимал чувства таких людей, почти перестал выходить из дома и отвечать на редкие телефонные звонки. Мне он приказал никого не принимать. И вот однажды раздался звонок в дверь. Я пошла открывать. На пороге стоял высокий человек с очень знакомым лицом. Он спросил, дома ли Николай Александрович. Я, как было велено, ответила, что его нет и когда вернется, не знаю. "Как жаль, - сказал высокий человек, - ведь я приехал повидаться с ним из Ленинграда", после чего попрощался и ушел. Николай Александрович поинтересовался, кто приходил. И когда я описала внешность этого человека, отец воскликнул: "Как жаль, ведь это был Корней Иванович Чуковский!". Через несколько минут в квартире вновь раздался звонок и на пороге возник К. И. Чуковский. Он извинился и попросил разрешения вызвать по телефону такси, так как никак не мог его поймать на улице. "Для вас, Корней Иванович, Николай Александрович всегда дома", - сказала я и провела гостя к Бернштейну. Они поздоровались, и Чуковский сказал: "Я не был с вами знаком, но приехал пожать вам руку и сказать, что интеллигенция Ленинграда возмущена расправой над вами". Мне хотелось послушать разговор, и я задержалась в комнате. Но хозяин и гость вскоре перешли на английский. Когда Чуковский ушел, я спросила, почему они говорили по-английски. Бернштейн ответил: "Ты еще маленькая. Можешь сболтнуть кому-нибудь, а люди из-за этого пострадают".

В РАБОТЕ ДО ПОСЛЕДНИХ ДНЕЙ

Жил Бернштейн очень бедно, в одной комнате коммунальной квартиры в Большом Левшинском переулке. До революции вся эта квартира принадлежала его отцу, Николаю Александровичу. По воспоминаниям жены ученого, Наталии Александровны, он каждый вечер проводил с семьей - играл на рояле, показывал звездное небо и рассказывал о нем удивительные истории, мастерил модели железнодорожных вагонов, где все было как настоящее, точно выдержаны все масштабы, часто рисовал Эйфелеву башню, которой восхищался всю жизнь. Он даже написал статью "Башня Эйфеля", которая была опубликована в шестом номере журнала "Наука и жизнь" за 1964 год.

Когда Сталин умер и кибернетика была реабилитирована, идеи биологической активности, выдвинутые Бернштейном, оказались вновь востребованы физиологами, кибернетиками, психолога ми. В начале 1960-х годов Н. А. Бернштейн много общается с физиками и математиками, пишет на темы кибернетики в специальные журналы, принимает участие в семинаре, организованном молодыми математиками, биологами и физиками.

У Николая Александровича было много учеников и последователей. Один из них - Л. В. Чхаидзе - с помощью биомеханики Бернштейна произвел анализ игры знаменитого футболиста 1940-х годов Бориса Пайчадзе. Позднее Чхаидзе стал доктором биологических наук, профессором кафедры биомеханики Грузинского института физической культуры. В 1972 году он вместе с С. В. Чумаковым написал книгу "Формула шага" о жизни и деятельности Н. А. Бернштейна.

В 1965 году в издательстве "Наука" вышла книга Л.В. Чхаидзе "Координация произвольных движений в условиях космического полета". Книга была переведена на английский язык и издана в качестве материалов НАСА в 1966 году. Предисловие к ней написал Н. А. Бернштейн, который имел непосредственное отношение к первому полету человека в космос. Когда в начале 1960-х шли тренировки будущих космонавтов, у медиков возникли серьезные опасения, что человек в невесомости потеряет координацию движений и затем не сумеет ее восстановить. За советом обратились к Николаю Александровичу как автору теории координации движений. Н. А. Бернштейн рассуждал так: на Земле получить условия невесомости можно лишь на очень короткое время, а повышенные перегрузки создать несложно. И он предложил проверить реакции будущих космонавтов не только при кратковременной невесомости, но и при испытаниях на центрифуге. В экспериментах по его методике участвовали В. Быковский, В. Комаров, Б. Волынов. Они показали, что координация движений человека сначала нарушается, но постепенно восстанавливается. Первый космический полет Юрия Гагарина блестяще подтвердил этот прогноз.

В 1965 году Н. А. Бернштейн поставил себе безнадежный диагноз - рак печени. Он выписался из клиники, созвал учеников, раздал им темы для будущей работы и оставшееся время посвятил своей последней книге "Очерки по физиологии движений и физиологии активности". Николай Александрович успел прочесть верстку, но книга вышла в свет уже после его смерти, которая наступила в январе 1966 года.

Непременно нужно добавить несколько слов еще об одной книге - той самой, набор которой он попросил рассыпать, узнав о кончине И. П. Павлова. Вскоре после смерти Сталина Н. А. Бернштейн подарил своему соратнику и ученику профессору И. М. Фейгенбергу экземпляр верстки со своей правкой, им же лично переплетенный, и предложил: "Когда-нибудь потом можете попробовать издать эту книгу". В 1992 году стараниями И. М. Фейгенберга и академика О. Г. Газенко удалось издать книгу Николая Александровича. Восстановить ее помогли те чудом сохранившиеся старые гранки. Невольно на память приходит знаменитая фраза Михаила Булгакова: "рукописи не горят".

ЧЕЛОВЕК УМИРАЕТ, НО ДЕЛО ЕГО ПРОДОЛЖАЕТ ЖИТЬ

Николай Александрович был активным автором и другом журнала "Наука и жизнь". Мы уже упоминали несколько его статей, опубликованных в разные годы, в том числе после его смерти. И журнал старается его помнить. В 1976 году профессор В. Л. Найдин написал и опубликовал большую статью "Чудо, которое всегда с тобой" о жизни и работе Н. А. Бернштейна (см. "Наука и жизнь" №№ 4-6, 1976 г.). Закончил автор так: "Пройдет не так много лет после его смерти, и склонные к скепсису англичане провозгласят развитие теории движений "эпохой Николо Бернштейна ". Находящиеся в невесомости космонавты во время многосуточных полетов будут тренировать свои мускулы по принципам, разработанным Николаем Александровичем еще в 30-е годы, когда энтузиазм первых ракетчиков еще находился на уровне любительства".

В научной среде существует так называемый индекс цитируемости. В нем после фамилии автора указывается, кто, где и когда ссылается на его работы. Такой индекс позволяет судить о ценности работы ученого, а также установить, как долго продолжают пользоваться полученными им результатами. Можно сказать и иначе: как быстро теряют к ним интерес и забывают их. Для научных работ в области физиологии этот срок обычно составляет несколько лет. Однако книги и статьи Н. А. Бернштейна не укладываются в эту закономерность. Скорее наоборот, интерес к ним постоянно растет. В середине 1930-х годов, когда были опубликованы его первые материалы по координации движений, на них почти никто не ссылался. А все дело в том, что они опередили время. Теперь же, через многие десятки лет, ссылками на эти работы полны исследования физиологов и психологов. Труды Н. А. Бернштейна в обязательном порядке изучают студенты университетов. Их переиздают, но они снова становятся библиографической редкостью. Похожая судьба была у музыкальных произведений Иоганна Себастьяна Баха. Их быстро забыли после смерти великого композитора, и вернул их к жизни композитор Феликс Мендельсон в середине XIX века, более чем через 200 лет после создания.

БЕРНШТЕЙН Николай Александрович (1896–1966) – русский и советский ученый, создатель нового направления в науке, которое он назвал «физиологией активности».

Н. А. Бернштейн впервые посмотрел на естественные движения человека с точки зрения их управляемости. Для него было очевидно, что сама по себе мышечная сила – это одно, а способность ею управлять – совершенно другое. «Всадник» – управление – оказался и более сложной и более важной проблемой, нежели «конь» – источник рабочей энергии.

Широкий кругозор, дружба с техникой и математикой (параллельно с медицинским Н. А. Бернштейн получил и математическое образование) позволили учёному провести глубокие аналогии между бурно развивавшейся в то время технической теорией автоматики и физиологическими процессами. Он писал: «Общий с регуляторами-автоматами принцип заключается в том, что то или иное действие исполнительного органа, например, сокращение мышц артериальной стенки по импульсу из центра, не является концом процесса: результат совершившегося действия немедленно воспринимается датчиком-рецептором и сообщается им по обратной связи в центр. Если исполнительный орган сработал в смысле регуляции неправильно, недостаточно или же чрезмерно, то сигнал с рецептора по обратной связи немедленно побудит центр соответственно усилить или умерить свою импульсацию. С новым нарушением процесс выравнивания возобновится. В физиологии всё ярче обнаруживается большая универсальность такой кольцевой схемы регуляции с помощью обратной связи».

Дальнейшие исследования привели Н. А. Бернштейна к гипотезе, что для построения движений различной сложности «команды» отдаются на иерархически различных уровнях нервной системы. При автоматизации движений эта функция передается на более низкий уровень.

Многочисленные наблюдения и эксперименты полностью подтвердили эту гипотезу.

Результаты исследований Н. А. Бернштейна, его труды по биомеханике имеют огромное практическое значение для спортивного тренера и спортсмена, для музыкального педагога и музыканта-исполнителя, для балетмейстера и артиста балета, для режиссера и актера, для всех тех профессий, для которых важно точное по результатам движение.

Труды Бернштейна важны и для врача, занимающегося формированием двигательных функций у больного, у которого они нарушены поражением нервной системы или двигательного аппарата (в частности при протезировании).

На сегодняшний день наиболее полное и продуктивное практическое использование идей Н. А. Бернштейна мы видим у Моше Фельденкрайза, физика и дзюдоиста, создателя своего метода переобучения движению и функциональной интеграции. Приходится признать, что для большинства профессиональных педагогов и тренеров труды Н. А. Бернштейна остались только теорией, не имеющей практического смысла. Некоторые, самые талантливые и опытные, иногда приходят к тем же принципам самостоятельно, что, с одной стороны, лишний раз подтверждает правильность и ценность теории, а с другой – говорит о тугости, с которой эта теория проникает в жизнь.

Основные работы:

  • Общая биомеханика. Москва, изд-во ВЦСПС, 1926.
  • Техника изучения движений. Москва, изд-во «Стандартизация и рационализация», 1934.
  • Проблемы взаимоотношений координации и локализации. Архив биологических наук, т. XXXVIII, вып. I, 1935.
  • Сборник «Исследования по биодинамике локомоций (ходьба взрослого нормального мужчины)». Москва, Медгиз, 1935.
  • Некоторые данные по биодинамике бега выдающихся мастеров:
  • 1. Опорная динамика бега. Журнал «Теория и практика физической культуры», 1937, вып. 3.
  • 2. Динамика ноги при беге. Там же, вып. 4, 1937.
  • К вопросу о природе и динамике координационной функции. Ученые записки МГУ, вып. 90, «Движение и деятельность», 1943.
  • О построении движений. Москва, Медгиз, 1946. (удостоена Государственной премии).
  • К вопросу о расчете беговых дорожек. Журнал «Теория и практика физической культуры», 1946, вып. 10.
  • Биодинамика стартовых движений. Журнал «Теория и практика физической культуры», 1947, вып. 8.
  • Некоторые назревающие проблемы регуляции двигательных актов. Журнал «Вопросы психологии», 1957, вып. 6.
  • Очередные проблемы физиологии активности. Сборник «Проблемы кибернетики», вып. 6, 1961.
  • Пути развития физиологии и связанные с ними задачи кибернетики. Сборник «Биологические аспекты кибернетики». АН СССР, 1962.
  • На путях к биологии активности. Журнал «Вопросы философии», 1965, вып. 10.
  • Очерки по физиологии движений и физиологии активности. Москва, «Медицина», 1966 (посмертно).
  • О ловкости и ее развитии. Москва, изд-во «Физкультура и спорт», 1991 (посмертно).